Deriving the Quadratic Formula	
REASONS	STEPS
- Given a quadratic equation	$a x^{2}+b x+c=0$
- Isolate the constant, c	$a x^{2}+b x=-c$
- Divide both sides by the leading coefficient, a. - Complete the square by taking half of the linear term (x-term) and square it. - Add the squared term to both sides.	$\begin{aligned} & x^{2}+\frac{b}{a}=\frac{c}{a} \\ & \frac{b}{2 a} \rightarrow \frac{b^{2}}{4 a^{2}} \\ & x^{2}+\frac{b}{a}+\frac{b^{2}}{4 a^{2}}=\frac{c}{a}+\frac{b^{2}}{4 a^{2}} \end{aligned}$
- Simplify on the right-hand side; in this case, simplify by converting to a common denominator.	$x^{2}+\frac{b}{a} x+\frac{b}{4 a^{2}}=\frac{4 a c}{4 a^{2}}+\frac{b^{2}}{4 a^{2}}$
- Rewrite the left-hand side to a square of a binomial. - Simplifying on the right by adding the fractional terms.	$\left(\begin{array}{l} \left.\left.\left(x+\frac{2 a}{2}\right)^{2}\right)\right)^{2}-4 a c \\ \left(5 a^{2}\right. \end{array}\right.$
- Take the square of both sides. Note: $\sqrt[n]{u^{n}}=\|u\|$, when n is even	$\left\|x+\frac{b}{2 a}\right\|=\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}$
- Note: $\|u\|=\left\{\begin{array}{c}u \\ o r \\ -u\end{array}\right.$	$x+\frac{b}{2 a}= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}=\frac{ \pm \sqrt{b^{2}-4 a c}}{2 a}$
- Isolate the x-variable. - Simplify the right side by converting to a common denominator.	$x=-\frac{b}{2 a} \pm \frac{2 b^{2}-4 a c}{2 a}=\frac{2 a \sqrt{b^{2}-4 a c}}{2 a}$

